On the anticyclotomic Iwasawa main conjecture for Hilbert modular forms of parallel weights

نویسندگان

چکیده

In this article, we study the Iwasawa theory for Hilbert modular forms over anticyclotomic extension of a CM field. We prove an one-sided divisibility result toward main conjecture in setting. The proof relies on first and second reciprocity laws relating theta elements to Heegner point Euler systems Shimura curves. As by-product also towards rank 0 case certain Bloch–Kato parity conjecture.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hilbert modular forms and the Ramanujan conjecture

Let F be a totally real field. In this paper we study the Ramanujan Conjecture for Hilbert modular forms and the Weight-Monodromy Conjecture for the Shimura varieties attached to quaternion algebras over F . As a consequence, we deduce, at all finite places of the field of definition, the full automorphic description conjectured by Langlands of the zeta functions of these varieties. Concerning ...

متن کامل

ON THE WEIGHTS OF MOD p HILBERT MODULAR FORMS

We prove many cases of a conjecture of Buzzard, Diamond and Jarvis on the possible weights of mod p Hilbert modular forms, by making use of modularity lifting theorems and computations in p-adic Hodge theory.

متن کامل

Weights in Serre’s Conjecture for Hilbert Modular Forms: the Ramified Case

Abstract. Let F be a totally real field and p ≥ 3 a prime. If ρ : Gal(F/F ) → GL2(Fp) is continuous, semisimple, totally odd, and tamely ramified at all places of F dividing p, then we formulate a conjecture specifying the weights for which ρ is modular. This extends the conjecture of Diamond, Buzzard, and Jarvis, which required p to be unramified in F . We also prove a theorem that verifies on...

متن کامل

On Anticyclotomic Μ-invariants of Modular Forms

We prove the μ-part of the main conjecture for modular forms along the anticyclotomic Zp-extension of a quadratic imaginary field. Our proof consists of first giving an explicit formula for the algebraic μ-invariant, and then using results of Ribet and Takahashi showing that our formula agrees with Vatsal’s formula for the analytic μ-invariant.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annales Mathématiques Du Québec

سال: 2022

ISSN: ['2195-4755', '2195-4763']

DOI: https://doi.org/10.1007/s40316-022-00208-7